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Pricing algorithms are populating markets

I We are increasingly delegating choices to algorithms: product
recommendations, content filtering, portfolio choices, pricing

I Chen et al. (2016) document that over 500 sellers active on
top 1,641 Amazon listings use algorithmic pricing

I Pricing automation seen as a source of value (e.g. Amazon)

I Algorithms in pricing are not a temporary phenomenon
(repricing industry)



Nothing new under the sun?

I Software/algo pricing is no news (since ’80s e.g. hotels,
airlines and financial markets): fixed rules (e.g. proxy bidding)

I Advancements in the field of AI spun a new class of algos:
I Model free
I Autonomously learn from experience
I Increasingly available off the shelf (data availability and

computing power)



Questions

I What is the consequence of AI pricing on price levels?
I Can AI agents autonomously ’learn’ to cooperate/collude?
I Can we inform the current (and lively) policy debate?



Paper

I Run experiments with AI pricing-agents in controlled
environments (computer simulations)
I Algos must be similar to those used in markets
I Environments must be realistic

I Workhorse IO model of competition: iterated price oligopoly
with differentiated goods

I Extensive comparative statics on market and algos’ parameters
I Extensive robustness checks



The Pricing Environment (an “MDP”)

I Time steps t = 0, 1, 2, ...,T (possibly T =∞ )
I State st (e.g. past prices)
I Action ai

t (e.g. price)
I One step dynamics: (st , ai

t)→ (st+1, π
i
t)

where πi
t is the Reward (profit)

I Agent’s problem is to chose a policy σ(st) = ai
t that solves:

max
σ

T∑
t=0

E [δtπt ] (1)



AI: Q-learning algorithm
At any period t a Q-algorithm...

I it decides whether to explore, with probability εt = e−βt

(uniformly) randomizing over prices, or to optimize choosing
the t-optimal price
I β ≥ 0 is rate of experimentation

I it stores the observed information (prices, profit), updating
the “Q-matrix”: present discounted value to each
state-actions pair

Qt+1(a, s) = (1− α)Qt(a, s) + α

(
πt + δmax

at+1
Qt(at+1, st+1)

)

I news weighted according to rate of learning α ∈ [0, 1]

Why Q-learning? Model free, simple, popular, successful



Baseline Environment: Economics

A workhorse model in IO: repeated game, simultaneous pricing
I 2 firms/algorithms
I Differentiated goods with Logit demand
I Constant marginal costs
I Symmetric
I Deterministic



Baseline Environment: Algorithms

I Actions: ai
t 15 price points (p = 9

10pNash, p = 11
10pmon)

I State: st = (p1
t−1, p2

t−1) (1 period memory)
I Reward: πt (deterministic)

I Algos interact with clones, i.e. Self-Learning and use
Independent Learning

I Large grid (100x100) of parameters (α, β)
I Many values of δ, baseline δ = 0.95
I 1000 sessions (“episodes”) for each parametrization,

beginning with random initial state (mean and sd)
I We give algos plenty of time to learn (off-line learning, as CS

do, e.g. Alpha-Go, Self-Driving)



Literature
I Computer Science:

I Vast and growing literature on multi-agent learning, e.g. traffic
control, interacting robots, autonomous cars, ...

I Few papers ’90s (Tesauro et al. at IBM) on learning pricing
algos, but special environments and “too much” special results

I Economics:
I Learning in games, but mostly “passive” learning (best

responding to observed behavior, e.g. BR-dynamics, fictitious
play, Bayesian-learning, RL)

I Milgrom and Roberts (1990) with supermodularity these
learning methods tend to static Nash

I Optimal experimentation (Bergeman and Valimaki 2006)
I Evolutionary GT and Automata (fixed-strategies with

replicatory dynamics of best performing)
I Relation EGT and learning (stoch. approximation), but only

simple models and no memory
I Klein (2018), sequential-staggered pricing (Maskin-Tirole

1988, commitment and coordination)



Results

The Q-learning pricing-agents interacting repeatedly typically:

1. Learn to play (Converge)
2. Learn to reasonably behave (Consistency & Equilibrium)
3. Learn to charge high prices (Cooperate)
4. Learn to collude (Strategies)



2- Equilibrium: how to test

I There are 22515 × 22515 (statesprices for 2 players) potential
equilibrium candidates, impossible

I We instead check if an algorithm is best-responding to the
strategy of the other algo
I In particular from equilibrium-prices (on path)
I but also off-path (subgame perfection)
I and if not best-responding we calculate how far



2 Equilibrium: results

I For example α = 0.15, β = 3× 10−5 (cells visited at least 25
times)

I In 70% of sessions agents are best-responding ‘on path.’
I In 61.5% mutual best-reponse, i.e. Nash Equilibrium.
I When they do not play Nash they are pretty close

(1% profit gain left on the table)
I Hence, once they learned algos cannot be exploited
I Off-path, less best-response (but still small distance) as

expected, these cells are less experimented



3 - Cooperation over the parameters-grid

Profit gain ∆(α, β) (=0 Bertrand-Nash, =1 Monopoly)
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I Cooperation from 60% to 99,1% Profit gain



3- Partial cooperation and price dispersion
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How are competitive prices supported?

I Do agents fail to learn to compete? Or...

I Do agents actually learn to collude?
I Policy implications radically different (the first, we can go

home, the second we must stay...)



4- Learn to collude: Test 1

I What do they learn when collusion cannot be an equilibrium?
I Case 1: δ = 0 (myopic)
I Case 2: k = 0 (no memory)

I Both cases ∆ ≈ 0 (Max 15%)



4- Learn to collude: Impulse response of prices
I Let agents play according to learnt strategies
I Agent 1 (Red) deviates: forced to charge lower price in t = 1
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(parameters: δ = 0.95, α = 0.15, β = 0.4× 10−5)



Same exercise, looking at profits

I Normalized 1 = πcollusive
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I Reaction of Blue makes deviation not profitable



5-period deviations

●

● ● ● ● ●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1.
5

1.
6

1.
7

1.
8

1.
9

P
ric

e

Pre Shock 1 5 10 15 20 25 Post Shock

● ●

● ●
● ●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Agent 1
Agent 2
Nash Price
Monopoly Price
Average price pre−shock



Robustness: more agents N > 2

I In the lab N > 2 kills cooperation (also experienced players).
I We looked at the case N = 3, N = 4

N = 2 N = 3 N = 4
∆ 80% 74 % 70 %

I Algos are superhuman at coordinating.



Robustness: variable market structure

I N ∈ {2, 3}
I Outsider: enters and exists in random fashion
I entry/exit serially correlated
I ∆ = 77%
I Same impulse response as before



Robustness: Asymmetric firms

I Collusion notoriously harder with asymmetric firms
I We looked at cost and demand asymmetries: results are

similar

I E.g. cost asymmetry c1 = 1

c2 1 0.875 0.750 0.625 0.5 0.25
2’s market share 50% 55% 60% 64% 67% 73%
∆ 80% 78% 74% 69% 65% 54%



Many Robustness Checks
Economic Environment:
I Change in δ
I Change in size of demand
I Change in product substitutability
I Different preferences (Singh and Vives)
I Stochastic demand

Increasing Complexity:
I More actions (30,50,100)
I Longer memory (2)
I Asymmetric learning: algos learning with different α and β
I Learning entrant
I Mixing different α and β after learning
I Continuous action space: DeepLearning (neural networks

Value-function approximations) (in progress)



Where are we next?

I Dominant algorithm, Predatory algorithm

I AI algorithms with personalized and dynamic pricing: per-se
and collusion

I Feeding actual market (big) data into learning algorithms



Policy. What to do?
We need to know more!
I Current legal approach inadequate with algos:

I no intent
I no mutual understanding
I no explicit agreement
I no communication

I Under current policy, algorithmic-collusion lawful
Possible approaches

1. Lasseiz Faire (algorithmic collusion just a theoretical curiosity)
2. Ban (the Sisyphus Luddite)
3. Regulation: ex-ante sand-boxing
4. Antitrust policy: ex-post look into algos

I Must reconsider balance between explicit and tacit collusion,
else too many false negative with algos
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Effect of discount factor on profit gain ∆
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