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1. Can Al-driven pricing algorithms learn to collude?

2. Would this be a competition law infringement?

@ Concerns mostly based on intuitive interpretation of Al

@ Many skeptical that this is even a problem
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Literature (1/2)

e Calvano, Calzolari, Denicolo and Pastorello (working paper, 2019)

o Also look at Q-learning collusion
o Results generally aligned

o Differences:

1. Updates occur simultaneously instead of sequentially
2. Allow for and require self-reactive conditioning (non-Markov)

3. Explicit analysis of punishment strategies
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Literature (2/2)

e Kuhn and Tadelis (2017), Schwalbe (2018)
o Humans and algorithms similarly ill-equiped to tacitly coordinate
o Would assume similar cognition for humans and Al
@ Tesauro and Kephart (2002), Huck, Normann and Oechssler (2003),
Waltman and Kaymak (2008)
o Use forms of Q-learning in oligopoly environments
o Full knowledge; Not robust; Do not produce equilibrium behavior

e Cooper et al. (2015)
o Certain revenue management convention may lead to collusion
o Not equilibrium behavior

@ Salcedo (2015)
o Collusion inevitable if short-run strategy commitments and 'decode’
o May be framed as communication; Conditions may not hold

e Miklos-Thal and Tucker (2019)
o Better demand prediction may require lower cartel prices
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Primer

Reinforcement Learning

state reward
S, R,
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Figure: Sutton and Barto (2018)
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Reinforcement Learning

state reward action
S, R, A,

R
_3S.. | Environment

Figure: Sutton and Barto (2018)

Q-Learning (Watkins, 1989)
@ Popular and well-established type of reinforcement learning

@ Aims to maximize sum of discounted rewards in unknown environment

@ Strong theoretical properties in single-agent settings
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Primer

Q-Learning

@ Q(a,s) estimates discounted rewards from action a € A in state s € S

e Tabular case: Q is a |A| x |S| matrix
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Primer

Q-Learning
@ Q(a,s) estimates discounted rewards from action a € A in state s € S

e Tabular case: Q is a |A| x |S| matrix

Learning Module

@ Take s as old state and s’ as new state

@ Recursive updating:

Q(a,s) + (1 — )Q(a,s) + « (R(a, s,s')+6 max Q(a, s’))

Action-Selection Module
@ Exogenously programmed to trade off exploitation-exploration
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Primer

Q-Learning
@ Q(a,s) estimates discounted rewards from action a € A in state s € S

e Tabular case: Q is a |A| x |S| matrix

Learning Module

@ Take s as old state and s’ as new state

@ Recursive updating:
Q(a,s) « (1 —a)Q(a,s) + « (R(a, s,8')+§ max Q(a, s’))

Action-Selection Module

@ Exogenously programmed to trade off exploitation-exploration

@ Provably converges to optimal policy under single-agent learning

@ No theoretical guarantee under multi-agent learning
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Environment and Algorithm

e Environment and Algorithm
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Environment and Algorithm

Environment: Sequential Competition

e Maskin and Tirole (1988), firms i € {1,2} set prices in turn
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Environment and Algorithm

Environment: Sequential Competition

e Maskin and Tirole (1988), firms i € {1,2} set prices in turn

Prices p' € {0, %, %, ..., 1}, so k intervals between 0 and 1

Per-period profit 7' = (p' — ¢')q’

Objective max Y ,_, 657, ¢

@ Scope: homogeneous good, linear demand, 2 firms
1-p if pf < p/
q = 05(1—p) ifp =p
0 if p' > p/
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Environment and Algorithm

Algorithm: Sequential Q-Learning

Learning Module

@ Take old state s = p{_l and new state s’ = p£+1,

Q(pis) ¢ (1~ 2)Q(pls) + a (w(s8) + 0705}, 5) + 22 max Q(p.))

v

Action-Selection Module
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Environment and Algorithm

Algorithm: Sequential Q-Learning

Learning Module

@ Take old state s = p{_l and new state s’ = p£+1,

Q(pis) ¢ (1~ 2)Q(pls) + a (w(s8) + 0705}, 5) + 22 max Q(p.))

v

Action-Selection Module
@ Explores with probability ¢ = Pickany p
@ Exploits with probability 1 —¢; = Pick p that maximizes Q(p, s)
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Environment and Algorithm

Algorithm: Sequential Q-Learning

Learning Module

@ Take old state s = p{_l and new state s’ = p£+1,

Q(pis) ¢ (1~ 2)Q(pls) + a (w(s8) + 0705}, 5) + 22 max Q(p.))

v

Action-Selection Module
@ Explores with probability ¢ = Pickany p
@ Exploits with probability 1 —¢; = Pick p that maximizes Q(p, s)

@ Still very basic algorithm:
1. Slow and inefficient learning
2. Untargetted exploration
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Performance Metrics

Expected profit gains Q(p',s) — QN

1) Profitability: A’ = -
(1) Profitability Joint-profit maximizing gains Q- QY

e A’ =1 joint-profit maximizing outcome

e A’ =0 competitive outcome (defined as static Nash)
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Performance Metrics

(1) Profitability: A = Expected profit gains _ Qi(p',s) — QN
' Joint-profit maximizing gains QE — QN

e A’ =1 joint-profit maximizing outcome

e A’ =0 competitive outcome (defined as static Nash)

(2) Optimalit ri - Expected future profits Qi(p',s)
imality: = = .
P Y Best-response future profits ~ max, Q" (p, s)

e Q' are the optimal Q-values given current competitor strategy
@ I =1 best response

@ " < 1 shows degree below best response
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Simulation Results

e Simulation Results
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Simulation Results

Two cases:

@ (1) Q-learning versus fixed-strategy tit-for-tat

@ (2) Q-learning versus Q-learning

Simulation set-up:
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Simulation Results

Two cases:
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@ (2) Q-learning versus Q-learning

Simulation set-up:

@ Price set: k = {6,12,50} possible prices

@ R =1000 runs of T = 300(k + 1)? periods each

@ Learning parameters: a« = 0.5, § = 0.95 and ¢, = (1 — 6)*

@ 0 such that &; = 0.5% halfway and £; = 0.0025% at the end
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Simulation Results

Two cases:
@ (1) Q-learning versus fixed-strategy tit-for-tat

@ (2) Q-learning versus Q-learning

Simulation set-up:

@ Price set: k = {6,12,50} possible prices

@ R =1000 runs of T = 300(k + 1)? periods each

@ Learning parameters: a« = 0.5, § = 0.95 and ¢, = (1 — 6)*

@ 0 such that &; = 0.5% halfway and £; = 0.0025% at the end

e Initiate Q with discounted perpetuity static Nash (not necessary)
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Simulation Results

(1) Q-learning versus fixed-strategy tit-for-tat, kK = 6

Average Profitability over Time
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Simulation Results

(2) Q-learning versus Q-learning, k =6

Average Profitability over Time
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Simulation Results

(2) Q-learning versus Q-learning, k = 12

Average Profitability over Time
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Simulation Results

(2) Q-learning versus Q-learning, k = 50

Average Profitability over Time
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Simulation Results

k=6 k=12 k=50
Runs with a fixed price 508/1,000 111/1,000 11/1,000
Runs with monopoly fixed price  194/1,000 35/1,000 0/1,000

Runs without a fixed price 492/1,000 889/1,000 989/1,000
Periods with a price decrease 47% 63% 76%
Periods with a price increase 22% 17% 11%

Table 1: Price dynamics final 100 periods

@ Adopts a fixed price or asymmetric price cycles

@ More asymmetric price cyles if k is larger
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Simulation
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@ Market price dynamics final 40 periods, 3 random runs, k = 50
@ Jumps before reaching lower bound, to price above monopoly
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Conclusions

© Conclusions
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Conclusions
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Conclusions

@ Autonomous algorithmic collusion in principle possible

@ Sequential Q leads to higher prices, only programmed to max own profits
@ Outcomes resemble equilibrium behavior ...
@ ... but scope for more advanced algorithms

1. to guarantee optimality

2. to deal with less stylized environments

@ Many exciting areas for future research!
o Multi-Agent Reinforcement Learning = see appendix
o Deep Reinforcement Learning

o Supervised Learning (function approximation)

o ()
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