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1. Can AI-driven pricing algorithms learn to collude?

2. Would this be a competition law infringement?

Concerns mostly based on intuitive interpretation of AI

Many skeptical that this is even a problem
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Literature (1/2)

Calvano, Calzolari, Denicolo and Pastorello (working paper, 2019)

Also look at Q-learning collusion

Results generally aligned

Differences:

1. Updates occur simultaneously instead of sequentially

2. Allow for and require self-reactive conditioning (non-Markov)

3. Explicit analysis of punishment strategies
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Literature (2/2)

Kuhn and Tadelis (2017), Schwalbe (2018)
Humans and algorithms similarly ill-equiped to tacitly coordinate
Would assume similar cognition for humans and AI

Tesauro and Kephart (2002), Huck, Normann and Oechssler (2003),
Waltman and Kaymak (2008)

Use forms of Q-learning in oligopoly environments
Full knowledge; Not robust; Do not produce equilibrium behavior

Cooper et al. (2015)
Certain revenue management convention may lead to collusion
Not equilibrium behavior

Salcedo (2015)
Collusion inevitable if short-run strategy commitments and ’decode’
May be framed as communication; Conditions may not hold

Miklos-Thal and Tucker (2019)
Better demand prediction may require lower cartel prices
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Primer

Reinforcement Learning

Figure: Sutton and Barto (2018)

Q-Learning (Watkins, 1989)

Popular and well-established type of reinforcement learning

Aims to maximize sum of discounted rewards in unknown environment

Strong theoretical properties in single-agent settings
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Primer

Q-Learning

Q(a, s) estimates discounted rewards from action a ∈ A in state s ∈ S

Tabular case: Q is a |A| × |S | matrix

Learning Module

Take s as old state and s ′ as new state

Recursive updating:

Q(a, s)← (1− α)Q(a, s) + α
(

R(a, s, s ′) + δmax
a

Q(a, s ′)
)

Action-Selection Module

Exogenously programmed to trade off exploitation-exploration

Provably converges to optimal policy under single-agent learning

No theoretical guarantee under multi-agent learning
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Environment and Algorithm

Environment: Sequential Competition

Maskin and Tirole (1988), firms i ∈ {1, 2} set prices in turn

Prices pi ∈ {0, 1k ,
2
k , ..., 1}, so k intervals between 0 and 1

Per-period profit πi = (pi − c i )qi

Objective max
∑

s=0 δ
sπit+s

Scope: homogeneous good, linear demand, 2 firms

qi =


1− pi if pi < pj

0.5(1− pi ) if pi = pj

0 if pi > pj
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Environment and Algorithm

Algorithm: Sequential Q-Learning

Learning Module

Take old state s = pj
t−1 and new state s ′ = pj

t+1,

Q(pi
t , s)← (1− α)Q(pi

t , s) + α

(
π(pi

t , s) + δπ(pi
t , s
′) + δ2 max

p
Q(p, s ′)

)
Action-Selection Module

Explores with probability εt ⇒ Pick any p

Exploits with probability 1− εt ⇒ Pick p that maximizes Q(p, s)

Still very basic algorithm:

1. Slow and inefficient learning

2. Untargetted exploration
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Performance Metrics

(1) Profitability: ∆i .=
Expected profit gains

Joint-profit maximizing gains
=

Q i (pi , s)− QN

QC − QN

∆i = 1 joint-profit maximizing outcome

∆i = 0 competitive outcome (defined as static Nash)

–

(2) Optimality: Γi .=
Expected future profits

Best-response future profits
=

Q i (pi , s)

maxp Q i∗(p, s)

Q i∗ are the optimal Q-values given current competitor strategy

Γi = 1 best response

Γi < 1 shows degree below best response
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Simulation Results

Two cases:

(1) Q-learning versus fixed-strategy tit-for-tat

(2) Q-learning versus Q-learning

Simulation set-up:

Price set: k = {6, 12, 50} possible prices

R = 1000 runs of T = 300(k + 1)2 periods each

Learning parameters: α = 0.5, δ = 0.95 and εt = (1− θ)t

θ such that εt = 0.5% halfway and εt = 0.0025% at the end

Initiate Q with discounted perpetuity static Nash (not necessary)
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Simulation Results

(1) Q-learning versus fixed-strategy tit-for-tat, k = 6
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Simulation Results

(2) Q-learning versus Q-learning, k = 6

Conclusions

-Profitability high

-194 with both ∆ = 1

-Often optimal

-164 with both Γ = 1

-63 with ∆ = Γ = 1
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Simulation Results

(2) Q-learning versus Q-learning, k = 12

Conclusions

-More profitable

-34 with both ∆ = 1

-Often optimal for
only one firm

-27 with both Γ = 1

-6 with ∆ = Γ = 1
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Simulation Results

(2) Q-learning versus Q-learning, k = 50

Conclusions

-Even more profitable

-Less optimal

-0 with ∆ = Γ = 1

-Price dynamics?
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Simulation Results

Adopts a fixed price or asymmetric price cycles

More asymmetric price cyles if k is larger
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Simulation Results

Market price dynamics final 40 periods, 3 random runs, k = 50
Jumps before reaching lower bound, to price above monopoly
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Conclusions

Autonomous algorithmic collusion in principle possible

Sequential Q leads to higher prices, only programmed to max own profits

Outcomes resemble equilibrium behavior ...

... but scope for more advanced algorithms

1. to guarantee optimality

2. to deal with less stylized environments

Many exciting areas for future research!

Multi-Agent Reinforcement Learning ⇒ see appendix

Deep Reinforcement Learning

Supervised Learning (function approximation)

(...)
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