Autonomous Algorithmic Collusion: Q-Learning Under Sequential Pricing

Timo Klein Tinbergen Institute; University of Amsterdam

Bergen Competition Policy Conference 2019 BECCLE, Norway

26 April 2019

.∋...>

- < /⊒ > < ∃ > <

- 1. Can Al-driven pricing algorithms learn to collude?
- 2. Would this be a competition law infringement?

- 1. Can Al-driven pricing algorithms learn to collude?
- 2. Would this be a competition law infringement?
- Concerns mostly based on intuitive interpretation of AI
- Many skeptical that this is even a problem

Literature

Primer on Reinforcement Learning and Q-Learning

3 Environment and Algorithm

4 Simulation Results

Literature

2 Primer on Reinforcement Learning and Q-Learning

3 Environment and Algorithm

4 Simulation Results

- Calvano, Calzolari, Denicolo and Pastorello (working paper, 2019)
 - Also look at Q-learning collusion
 - Results generally aligned
 - Differences:
 - 1. Updates occur simultaneously instead of sequentially
 - 2. Allow for and require self-reactive conditioning (non-Markov)
 - 3. Explicit analysis of punishment strategies

Literature (2/2)

- Kuhn and Tadelis (2017), Schwalbe (2018)
 - Humans and algorithms similarly ill-equiped to tacitly coordinate
 - Would assume similar cognition for humans and AI
- Tesauro and Kephart (2002), Huck, Normann and Oechssler (2003), Waltman and Kaymak (2008)
 - Use forms of Q-learning in oligopoly environments
 - Full knowledge; Not robust; Do not produce equilibrium behavior
- Cooper et al. (2015)
 - Certain revenue management convention may lead to collusion
 - Not equilibrium behavior
- Salcedo (2015)
 - Collusion inevitable if short-run strategy commitments and 'decode'
 - May be framed as communication; Conditions may not hold
- Miklos-Thal and Tucker (2019)
 - Better demand prediction may require lower cartel prices

Literature

2 Primer on Reinforcement Learning and Q-Learning

3 Environment and Algorithm

4 Simulation Results

Timo Klein (TI, UvA)

5 Conclusions

- ∢ ∃ ▶

Reinforcement Learning

Figure: Sutton and Barto (2018)

Reinforcement Learning

Figure: Sutton and Barto (2018)

- Q-Learning (Watkins, 1989)
- Popular and well-established type of reinforcement learning
- Aims to maximize sum of discounted rewards in unknown environment
- Strong theoretical properties in single-agent settings

Q-Learning

- Q(a, s) estimates discounted rewards from action $a \in A$ in state $s \in S$
- Tabular case: Q is a $|A| \times |S|$ matrix

Q-Learning

- Q(a, s) estimates discounted rewards from action $a \in A$ in state $s \in S$
- Tabular case: Q is a $|A| \times |S|$ matrix

Learning Module

- Take s as old state and s' as new state
- Recursive updating:

$$Q(a, s) \leftarrow (1 - lpha)Q(a, s) + lpha \left(R(a, s, s') + \delta \max_{a} Q(a, s')\right)$$

Action-Selection Module

Exogenously programmed to trade off exploitation-exploration

Q-Learning

- Q(a, s) estimates discounted rewards from action $a \in A$ in state $s \in S$
- Tabular case: Q is a $|A| \times |S|$ matrix

Learning Module

- Take s as old state and s' as new state
- Recursive updating:

$$Q(a, s) \leftarrow (1 - lpha)Q(a, s) + lpha \left(R(a, s, s') + \delta \max_{a} Q(a, s')\right)$$

Action-Selection Module

- Exogenously programmed to trade off exploitation-exploration
- Provably converges to optimal policy under single-agent learning
- No theoretical guarantee under multi-agent learning

Literature

2 Primer on Reinforcement Learning and Q-Learning

3 Environment and Algorithm

4 Simulation Results

Timo Klein (TI, UvA)

• Maskin and Tirole (1988), firms $i \in \{1, 2\}$ set prices in turn

- Maskin and Tirole (1988), firms $i \in \{1, 2\}$ set prices in turn
- Prices $p^i \in \{0, \frac{1}{k}, \frac{2}{k}, ..., 1\}$, so k intervals between 0 and 1

- Maskin and Tirole (1988), firms $i \in \{1, 2\}$ set prices in turn
- Prices $p^i \in \{0, \frac{1}{k}, \frac{2}{k}, ..., 1\}$, so k intervals between 0 and 1
- Per-period profit $\pi^i = (p^i c^i)q^i$

- Maskin and Tirole (1988), firms $i \in \{1, 2\}$ set prices in turn
- Prices $p^i \in \{0, \frac{1}{k}, \frac{2}{k}, ..., 1\}$, so k intervals between 0 and 1
- Per-period profit $\pi^i = (p^i c^i)q^i$
- Objective $\max \sum_{s=0} \delta^s \pi^i_{t+s}$

- Maskin and Tirole (1988), firms $i \in \{1, 2\}$ set prices in turn
- Prices $p^i \in \{0, \frac{1}{k}, \frac{2}{k}, ..., 1\}$, so k intervals between 0 and 1
- Per-period profit $\pi^i = (p^i c^i)q^i$
- Objective $\max \sum_{s=0} \delta^s \pi^i_{t+s}$
- Scope: homogeneous good, linear demand, 2 firms

$$q^{i} = \begin{cases} 1 - p^{i} & \text{if } p^{i} < p^{j} \\ 0.5(1 - p^{i}) & \text{if } p^{i} = p^{j} \\ 0 & \text{if } p^{i} > p^{j} \end{cases}$$

Environment and Algorithm

Algorithm: Sequential Q-Learning

Learning Module

• Take old state $s = p_{t-1}^{j}$ and new state $s' = p_{t+1}^{j}$,

 $Q(p_t^i, s) \leftarrow (1 - \alpha)Q(p_t^i, s) + \alpha \left(\pi(p_t^i, s) + \delta \pi(p_t^i, s') + \delta^2 \max_p Q(p, s')\right)$

Action-Selection Module

Timo Klein (TI, UvA)

Environment and Algorithm

Algorithm: Sequential Q-Learning

Learning Module

• Take old state $s = p_{t-1}^{j}$ and new state $s' = p_{t+1}^{j}$,

 $Q(p_t^i, s) \leftarrow (1 - \alpha)Q(p_t^i, s) + \alpha \left(\pi(p_t^i, s) + \delta \pi(p_t^i, s') + \delta^2 \max_p Q(p, s')\right)$

Action-Selection Module

- Explores with probability $\varepsilon_t \implies$ Pick any p
- Exploits with probability $1 \varepsilon_t \Rightarrow \text{Pick } p$ that maximizes Q(p, s)

イロト イポト イヨト イヨト 二日

Environment and Algorithm

Algorithm: Sequential Q-Learning

Learning Module

• Take old state $s = p_{t-1}^{j}$ and new state $s' = p_{t+1}^{j}$,

 $Q(p_t^i, s) \leftarrow (1 - \alpha)Q(p_t^i, s) + \alpha \left(\pi(p_t^i, s) + \delta \pi(p_t^i, s') + \delta^2 \max_p Q(p, s')\right)$

Action-Selection Module

- Explores with probability $\varepsilon_t \implies$ Pick any p
- Exploits with probability $1 \varepsilon_t \Rightarrow \text{Pick } p$ that maximizes Q(p, s)
- Still very basic algorithm:
 - 1. Slow and inefficient learning
 - 2. Untargetted exploration

(1) Profitability: $\Delta^{i} \doteq \frac{\text{Expected profit gains}}{\text{Joint-profit maximizing gains}} = \frac{Q^{i}(p^{i}, s) - Q^{N}}{Q^{C} - Q^{N}}$

- $\Delta^i = 1$ joint-profit maximizing outcome
- $\Delta^i = 0$ competitive outcome (defined as static Nash)

(1) Profitability: $\Delta^{i} \doteq \frac{\text{Expected profit gains}}{\text{Joint-profit maximizing gains}} = \frac{Q^{i}(p^{i}, s) - Q^{N}}{Q^{C} - Q^{N}}$

- $\Delta^i = 1$ joint-profit maximizing outcome
- $\Delta^i = 0$ competitive outcome (defined as static Nash)

(2) Optimality:
$$\Gamma^{i} \doteq \frac{\text{Expected future profits}}{\text{Best-response future profits}} = \frac{Q^{i}(p^{i}, s)}{\max_{p} Q^{i^{*}}(p, s)}$$

- Q^{i*} are the optimal Q-values given current competitor strategy
- $\Gamma^i = 1$ best response
- $\Gamma^i < 1$ shows degree below best response

Literature

- 2 Primer on Reinforcement Learning and Q-Learning
- 3 Environment and Algorithm
- ④ Simulation Results

- (1) Q-learning versus fixed-strategy tit-for-tat
- (2) Q-learning versus Q-learning

- (1) Q-learning versus fixed-strategy tit-for-tat
- (2) Q-learning versus Q-learning

Simulation set-up:

• Price set: $k = \{6, 12, 50\}$ possible prices

- (1) Q-learning versus fixed-strategy tit-for-tat
- (2) Q-learning versus Q-learning

- Price set: $k = \{6, 12, 50\}$ possible prices
- R = 1000 runs of $T = 300(k+1)^2$ periods each

- (1) Q-learning versus fixed-strategy tit-for-tat
- (2) Q-learning versus Q-learning

- Price set: $k = \{6, 12, 50\}$ possible prices
- R = 1000 runs of $T = 300(k+1)^2$ periods each
- Learning parameters: $\alpha = 0.5$, $\delta = 0.95$ and $\varepsilon_t = (1 \theta)^t$

- (1) Q-learning versus fixed-strategy tit-for-tat
- (2) Q-learning versus Q-learning

- Price set: $k = \{6, 12, 50\}$ possible prices
- R = 1000 runs of $T = 300(k+1)^2$ periods each
- Learning parameters: $\alpha = 0.5$, $\delta = 0.95$ and $\varepsilon_t = (1 \theta)^t$
- θ such that $\varepsilon_t = 0.5\%$ halfway and $\varepsilon_t = 0.0025\%$ at the end

- (1) Q-learning versus fixed-strategy tit-for-tat
- (2) Q-learning versus Q-learning

- Price set: $k = \{6, 12, 50\}$ possible prices
- R = 1000 runs of $T = 300(k+1)^2$ periods each
- Learning parameters: $\alpha = 0.5$, $\delta = 0.95$ and $\varepsilon_t = (1 \theta)^t$
- θ such that $\varepsilon_t = 0.5\%$ halfway and $\varepsilon_t = 0.0025\%$ at the end
- Initiate Q with discounted perpetuity static Nash (not necessary)

(1) Q-learning versus fixed-strategy tit-for-tat, k = 6

(2) Q-learning versus Q-learning, k = 6

Timo Klein (TI, UvA)

26 April 2019 17 / 23

(2) Q-learning versus Q-learning, k = 12

(2) Q-learning versus Q-learning, k = 50

Timo Klein (TI, UvA)

	k = 6	k = 12	k = 50
Runs with a fixed price	508/1,000	111/1,000	$11/1,\!000$
Runs with monopoly fixed price	194/1,000	35/1,000	0/1,000
		•	
Runs without a fixed price	492/1,000	889/1,000	989/1,000
Periods with a price decrease	47%	63%	76%
Periods with a price increase	22%	17%	11%

Table 1: Price dynamics final 100 periods

- Adopts a fixed price or asymmetric price cycles
- More asymmetric price cyles if k is larger

• Market price dynamics final 40 periods, 3 random runs, k = 50

• Jumps before reaching lower bound, to price above monopoly

Timo Klein (TI, UvA)

26 April 2019 21 / 23

Literature

- 2 Primer on Reinforcement Learning and Q-Learning
- 3 Environment and Algorithm
- 4 Simulation Results

• Autonomous algorithmic collusion in principle possible

- Autonomous algorithmic collusion in principle possible
- Sequential Q leads to higher prices, only programmed to max own profits

- Autonomous algorithmic collusion in principle possible
- Sequential Q leads to higher prices, only programmed to max own profits
- Outcomes resemble equilibrium behavior ...

- Autonomous algorithmic collusion in principle possible
- Sequential Q leads to higher prices, only programmed to max own profits
- Outcomes resemble equilibrium behavior ...
- ... but scope for more advanced algorithms
 - 1. to guarantee optimality
 - 2. to deal with less stylized environments

- Many exciting areas for future research!
 - Multi-Agent Reinforcement Learning \Rightarrow see appendix
 - Deep Reinforcement Learning
 - Supervised Learning (function approximation)
 - (...)