Partial Exclusivity

Philippe Choné (CREST, ENSAE)

Laurent Linnemer (CREST, ENSAE)

Thibaud Vergé (CREST, ENSAE and NHH / BECCLE)

BECCLE Annual Conference NHH, Bergen – April 27, 2017

Auctions or negotiations?

Selling or procurement situations

- Selling of TV rights for sports.
- M&A (in particular Acquisitions).
- Supermarket private-label products or procurement in general.

Do not always resort to competition (tendering, auction)

- Often private negotiations long in advance (e.g. TV rights for the 2026 Football World Cup have already been sold in the U.S., Rugby Top 14).
- Tacit renewal of a contract (many antitrust cases).

Puzzle for economists

• Bulow and Klemperer (1996): the maximum revenue (i.e., using a Myerson's optimal mechanism with reserve prices) with n (symmetric) bidders is less than the revenue from an English auction with n+1 (symmetric) bidders.

This paper

Room for vertical collusion

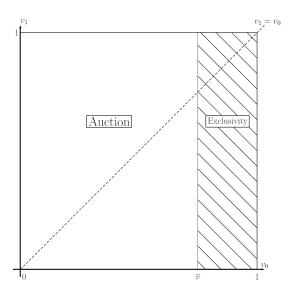
- The seller and one buyer can profitably deal together and exclude other potential buyers.
- But exclusion is only partial and an auction occurs with positive probability.

Intuition: too much rent for the winner in a first price auction

- B_1 bids $b_1 = \mathbb{E}[v|v < v_1] < v_1$.
- Whenever $b_1 < v_0 < v_1$, $S + B_0$ prefer to deal together rather than letting B_1 win the auction.

Timing

Partial exclusivity with a purchase option


One seller (S) and n+1 buyers (B₀ (preferred), B_1, \dots, B_n)

- ① Ex ante, B_0 and S agree (or not) on a transfer for a purchase option with a fixed strike price \overline{b} .
- ② B_0 and B_1, \dots, B_n privately observe v_0 and v_1, \dots, v_n (i.i.d, drawn from distribution F).
- 3 B₀ decides to use the option or not.
- **4** If not, an auction is run with n+1 bidders (sealed-bid first price auction).

Buying Option ⇒ **Partial Exclusivity**

- Choosing a strike price $\overline{b} \Longleftrightarrow$ choosing a threshold \overline{v} .
- If $v_0 > \overline{v}$ then B_0 buys at price \overline{b} .
- If $v_0 < \overline{v}$ then B_0 does not buy and S runs an auction.

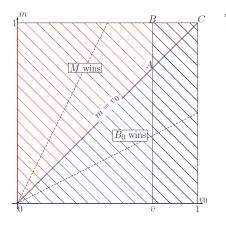
Partial exclusivity

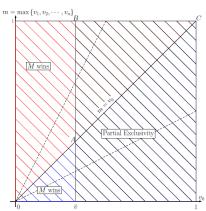
Naive competitors

Assume B_1, \dots, B_n are not aware of the ex ante agreement

Bidding strategies in the auction

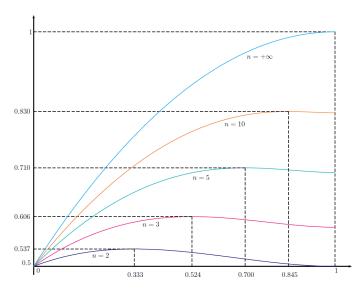
- ullet Naive competitors bid as in an auction with n+1 symmetric bidders.
- So the preferred buyer does B_0 (best-reply to unchanged strategies).

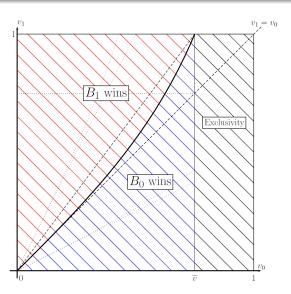

For any distribution F and $n \ge 1$


Partial Exclusivity is optimal (unique cutoff $\bar{v}(n)$).

If F and 1 - F are log-concave

- Probability to run an auction increases with the number of potential buyers (i.e. $\bar{v}(n)$ increasing in n).
- If $\widetilde{F} \geq^{\operatorname{lr}} F$ there is less exclusivity for \widetilde{F} .


Graphical proof



Comparative static on *n*

F uniform over [0,1]

Sophisticated competitors Asymmetric auction à la Maskin and Riley

Sophisticated competitors

Assume B_1, \dots, B_n are aware of the ex ante agreement

Sophisticated competitors reduce their bids.

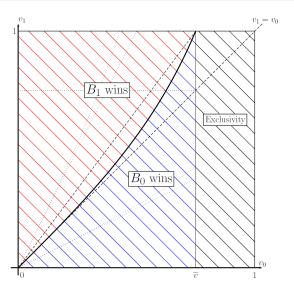
- This makes partial exclusivity less attractive as it reduces the expected revenue when the auction takes place.
- But the intuition of the naive case still remains valid.

Results with sophisticated buyers

- If n = 1, then for any distribution F:
 Partial Exclusivity > Full Competition ~ Full Exclusivity.
- If F is uniform, then for any n, partial exclusivity is optimal.

But the value of the strike price $ar{b}$ is not observed

(Perverse) incentive to reduce \bar{v} , i.e., exclusivity more attractive with a secret strike price.


- Because a deviation in the strike price is not observed, bidding behaviour is unaffected.
- B_0 replaces B_1 as the selected buyer but it remains profitable as long as v_0 is larger than B_1 highest bid.

Results with unobserved strike price

- If n = 1 then (for any distribution F), full exclusivity is the only equilibrium.
- For $n \ge 2$ then (for any distribution F), partial exclusivity is optimal and $\bar{v}(n-1) \le \bar{v}^e(n) \le b_n^*(1)$.

Sophisticated competitors

Asymmetric auction à la Maskin and Riley

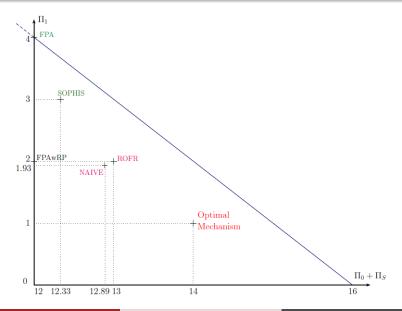
Timing with pre-auction negotiation

Partial exclusivity with a priority right

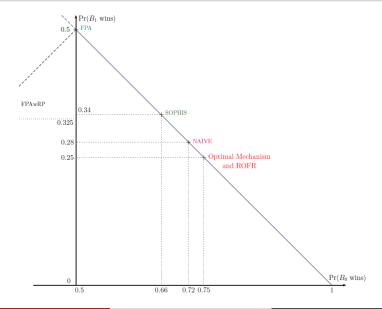
Continuum of semi-separating equilibria

- For any $\overline{v} \in [0,1]$, B_0 offers $\overline{b} = \overline{v}/(1+\overline{v})$ if $v_0 > \overline{v}$ and 0 otherwise.
- S accepts to sell at \overline{b} and rejects the zero price offer.
- If the seller receives an out-of-equilibrium offer, she believes that $v_0 \geq \overline{v}$ and rejects it.
- All equilibria survive usual refinement criteria.

Partial Exclusivity


One competitor. Uniform distribution

	По	П _S	$(\Pi_0 + \Pi_S)$	П1	W	Pr(B ₀ wins)	Pr(B ₁ wins)
(a) 1st price	4	8	12	4	16	.5	.5
(b) 1st price with res. price 0.5	2	10	12	2	14	.325	.325
(c) Optimal mechanism	n/a	n/a	14	1	15	.75	.25
(d) Right of first refusal	7	6	13	2	15	.75	.25
(e) Purchase option (Naive)	5.48	7.40	12.89	1.93	14.81	.72	.28
(f) Purchase option (Sophist.)	5.54	6.8	12.33	3	15.4	.66	.34


¹ All values for profits qnd welfare are to be divided by 24.

² All values for the purchase option cases are approximated values.

The various scenarios

The various scenarios

Antitrust issues

- These vertical agreements all reduce welfare.
- Right of first refusal (or English clause) much disliked by antitrust enforcers.
- Our purchase option is less harmful than ROFR or auction with reserve price (or right to resell) – at least with sophisticated buyers.
- The priority right seems relatively mild: Does multiplicity of equilibria call for regulatory intervention?
- Purchase option is not exactly a rent shifting mechanism: allocative inefficiency, but partially excluded buyers pay a lower price when they win the auction.

- Philippe Choné (philippe.chone@ensae.fr)
- Laurent Linnemer (<u>laurent.linnemer@ensae.fr</u>)
- Thibaud Vergé (thibaud.verge@ensae.fr)

BECCLE

BERGEN CENTER FOR COMPETITION LAW AND ECONOMICS